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A NOVEL METHOD OF MODELING DYNAMIC EVOLUTIONARY 

GAME WITH RATIONAL AGENTS FOR MARKET 

FORECASTING 
  

Abstract. Gold price modeling and prediction is a difficult problem and 

drastic changes of the price causes nonlinear dynamic that makes the price 

prediction one of the most challenging tasks for economists. Since gold market 

always has been interesting for traders, many of traders with various beliefs were 

highly active in gold market. The competition among two agents of traders, namely 

trend followers and rational agents, to gain the highest profit in gold market is 

formulated as a dynamic evolutionary game, where, the evolutionary equilibrium is 

considered to be the solution to this game. Furthermore, genetic algorithm is being 

used to find the unknown parameters of the model, so that we could maximize the 

fitness of the proposed multi agent model and the gold market daily price data. 

Besides the evolutionary game dynamic, we proposed a new method for modeling 

rational expectations using recurrent neural network. The evolutionarily stable 

strategies is proven despite the prediction error of the expectation. The empirical 

results show the high efficiency of the proposed method which could forecast future 

gold price precisely. 

Keywords: Evolutionary Game Theory · Rational Agent · Evolutionary 

Stable State · Recurrent Neural Network · Two Step Ahead Prediction · 

Reinforcement Learning · Gold Market. 
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1. Introduction 

Evolutionary game theory (EGT) reveals strategic interactions with 

dynamic adjustment process of players that can switch between strategies. In a 

typical evolutionary game, two main components are taken as payoff matrix which 
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indicates the outcome of corresponded strategy and the dynamic rule of the agent. 

Over time, under dynamic rule of evolution strategies, lower associated payoffs 

will be replaced by strategies with higher payoffs till the strategies converge 

towards evolutionarily stable strategy (ESS) from the set of available strategies that 

is robust to evolutionary pressures and uninvadable by any other strategy [1]. 

Simply put, in evolutionary games, players slowly change their strategies to 

achieve the solution eventually [2]. When the solution to an evolutionary game has 

more than one equilibriums, a refined solution is required which ensures that the 

Nash equilibrium is stable [3] and no player can increase his payoff by choosing a 

different action, given other players actions [4]. In society we can conceive a 

selection mechanism that the strategies which perform better than average are the 

ones that in the long run become dominant. These dominant strategies will become 

the set of rules that are adopted by the majority of the population [5]. Thereupon, 

in the last few years , evolutionary game theory has been extensively used to model 

economic issues such as study the dynamics of the labor market [6],[7], study the 

interaction between firms and workers[8], macroeconomic monetary policy [9], 

neuro-economics[10] and as a tool to address the behavior in financial markets[11]. 

Moreover, a number of papers have investigated the stability of evolutionary 

dynamics and they emphasized that the large fraction of fundamentalists tends to 

stabilize price, whereas, a large fraction of chartists tends to destabilize price. 

Brock, et al. [12] investigated whether a fully rational agent can employ additional 

hedging instruments to stabilize markets. It turns out that the composition of the 

population on irrational traders and the information gathering costs for rationality 

may affect the answer. In this paper, the stability analyze of the dynamic is being 

reconsidered. We emphasize the role of heterogeneous beliefs in a market with two 

groups of traders having different expectations about future price. The first agent 

traders are fully rational with perfect foresight trying to predict the future price 

with neglectable error. The second typical traders are technical analysts who belief 

that asset prices could be predicted by simple technical trading rules, extrapolation 

of trends and other patterns observed in past prices. An important question in 

heterogeneous agents modeling is whether irrational traders can survive in the 

market or they would be driven out of the market by rational investors and lose 

their wealth. It is being proven that in a stable dynamic evolutionary game with 

rational agents for market forecasting, agents have nonzero fraction of the market 

which means that the traders would survive in the market. The major contributions 

of this paper can be summarized as follows: 

In this paper a new approach of modeling heterogeneous evolutionary 

dynamic of asset pricing models with fully rational agents is proposed. 

Furthermore, stability condition of the proposed model has been studied. 

Moreover, a new method for modeling rational expectations using recurrent neural 

network is proposed. 

Besides, the forecast ability of proposed model is become manifest 

modeling gold market data based on it. This model shows high convergence rate, 

low prediction error and efficiency in gold market forecasting. The proposed 
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method could be widely applied to similar management and decision making 

problems consist of fully rational agents.  

 

2. Evolutionary Dynamic Formulation of the Asset Pricing Model in  

     Heterogeneous Market 

 

The asset pricing model with heterogeneous beliefs using evolutionary 

selection of expectation (BH model) as introduced by Brock and Hommes has been 

used [13]. The BH model is consisting of a multi agent system where agents could 

either invest in a risk free asset or they could engage risky asset investment. The 

risk free investment pays a fixed rate of return r; on the contrary, the risky asset 

pays an uncertain dividend. Eq.1 depicts the wealth dynamic wherein 𝑃𝑡stands for 

the price for share of the risky asset and 𝑦𝑡 be the stochastic dividend process of 

the risky asset at time 𝑡. 

 

𝑊𝑡+1 = 𝑅𝑊𝑡 + (𝑃𝑡+1 + 𝑦𝑡+1 − 𝑅𝑃𝑡)𝑍𝑡    (1) 

 

where, 𝑅 = 1 + 𝑟 denotes the gross rate of risk free return and𝑍𝑡 denotes the 

number of shares of the risky asset purchased at time 𝑡. It is clear that, in a multi 

agent system with 𝐻 different agents of traders, each agent tries to maximize the 

mean-variance equation with respect to𝑍𝑡 to get 𝑍ℎ,𝑡 which is the number of shares 

purchased by agent type ℎ. 

 

𝑚𝑎𝑥
𝑍𝑡

{𝐸ℎ,𝑡[𝑊𝑡+1] −
𝑎

2
𝑉ℎ,𝑡[𝑊𝑡+1]}                       (2) 

 

where𝐸ℎ,𝑡 and 𝑉ℎ,𝑡 stand for belief or forecast of trader of agent ℎ about 

conditional expectation and conditional variance respectively and 𝑎 is risk-aversion 

parameter. Besides, 𝑍𝑠,the supply of outside risky shares, assumed to be constant, 

𝑛ℎ,𝑡 denotes the fraction of agent type ℎ at time𝑡 and conditional variance assumed 

to be constant for all traders type as 𝑉ℎ,𝑡 = 𝜎2  the equilibrium of demand and 

supply yields Eq.3 

 

𝑅𝑃𝑡 = ∑ 𝑛ℎ,𝑡𝐸ℎ,𝑡[𝑃𝑡+1 + 𝑦𝑡+1] − 𝑍𝑠𝑎𝜎2𝐻
ℎ=1     (3) 

The term 𝑍𝑠𝑎𝜎2 is the risk premium for traders to hold risky assets. Suppose, 𝑝∗ denotes 

the common belief about the fundamental price which is equal for all traders type and 𝑥𝑡, 

deviation from the fundamental price, defined as 𝑥𝑡 = 𝑃𝑡 − 𝑝∗. In case of 𝐸[𝑦𝑡] = �̅�, we 

assume that for all types of traders we have 𝐸ℎ,𝑡[𝑦𝑡+1] = 𝐸[𝑦𝑡+1] = �̅� and all conditional 

believes𝐸ℎ,𝑡[𝑃𝑡+1] are the form of  

 

𝐸ℎ,𝑡[𝑃𝑡+1] = 𝐸ℎ,𝑡[𝑝
∗] + 𝐸ℎ,𝑡[𝑥𝑡+1] = 𝑝∗ + 𝑓ℎ,𝑡(𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥𝑡−𝐿)  (4) 
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𝑓ℎ,𝑡(𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥𝑡−𝐿), the heterogeneous part of the conditional 

expectation, is called forecasting rule which differs agents. Now we could re-

evaluate the equilibrium of supply and demand equation in deviation with respect 

to the 𝑅𝑝∗ = 𝐸𝑡[𝑝
∗ + 𝑦𝑡+1] which yields 

 

𝑅𝑥𝑡 = ∑ 𝑛ℎ,𝑡𝐸ℎ,𝑡[𝑥𝑡+1]
𝐻
ℎ=1 ≡ ∑ 𝑛ℎ,𝑡𝑓ℎ,𝑡

𝐻
ℎ=1     (5) 

 

In mentioned dynamic, the method of evolving the fraction 𝑛ℎ,𝑡 of each 

trader type that describes how believes are updated over time is the evolutionary 

part of the model. Fraction is evaluated through the multi-nominal logit model 

called Gibbs probabilities which is based on the discrete choice models. 

 

             𝑛ℎ,𝑡 =
𝑒
𝛽𝑈ℎ,𝑡−1

∑ 𝑒
𝛽𝑈ℎ,𝑡−1𝐻

ℎ=1

           (6) 

 

where, 𝛽 shows the intensity of choice depends on the sensitivity of traders to 

selecting the optimal prediction strategy and 𝑈ℎ,𝑡 is the realized profit of traders 

type ℎ which is a natural candidate for evolutionary fitness. If  ,0 ≤ 𝜂 ≤ 1, is a 

memory parameter in fitness function showing the impact of past realized fitness 

on strategy selection. In case of zero supply of outside risky shares,𝑍𝑠 = 0, fitness 

function can be rewritten as 

 

𝑈ℎ,𝑡 = (𝑥𝑡 − 𝑅𝑥𝑡−1) (
𝑓ℎ,𝑡−1−𝑅𝑥𝑡−1

𝑎𝜎2 ) + 𝜂. 𝑈ℎ,𝑡−1    (7) 

 

2.1 Evolutionary Model with Fully Rational Agents 

In this part, an evolutionary dynamic with a rational agent will be 

investigated. In first agent, traders try to have a perfect prediction about future 

price which leads to development of fully rational agent with perfect foresight. 

They have perfect knowledge of heterogeneous market equilibrium equation and 

beliefs of all other traders. This agent’s forecasting rule is obtained by Eq.8 

 

                           𝑓1,𝑡 = 𝑥𝑡+1      (8) 

 

In contract to rational traders, trend followers believe that price varies in a 

very simple manner with respect to previous data. They use linear forecasting rule 

that is given by Eq.9 

 

                            𝑓2,𝑡 = 𝑔. 𝑥𝑡−1      (9) 

 

Eq.11 will be formed with substituting the beliefs of the agents with perfect 

foresight and trend followers as in Eq.8and Eq.9 into Eq.5. 
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𝑅. 𝑥𝑡 = 𝑛1,𝑡−1. 𝑥𝑡+1 + 𝑛2,𝑡−1. 𝑔. 𝑥𝑡−1     (10) 

 

where,𝑛ℎ,𝑡−1 is the fraction of agent type ℎ at time 𝑡 − 1. 

Suppose, 𝑚 is defined as the difference of 𝑛1 and 𝑛2as 𝑚 = 𝑛1 − 𝑛2. 

Knowing 𝑛1 + 𝑛2 = 1 and 𝑛1,𝑡 =
1+𝑚𝑡

2
 and 𝑛2,𝑡 =

1−𝑚𝑡

2
, Eq.11 could be rewritten 

as 

 

𝑅𝑥𝑡 =
1+𝑚𝑡−1

2
. 𝑥𝑡+1 +

1−𝑚𝑡−1

2
. 𝑔. 𝑥𝑡−1    (11) 

 

Carrying 𝑥𝑡+1 to the other side of the equation, Eq.12 leads to Eq.13 

 

𝑥𝑡 =
2𝑅

1+𝑚𝑡−2
. 𝑥𝑡−1 +

𝑚𝑡−2−1

1+𝑚𝑡−2
. 𝑔. 𝑥𝑡−2     (12) 

 

Evaluating fitness function for both agents through Eq.7 and substituting 

them in Eq.6, the dynamic of 𝑚 could be written as 

 

𝑚 = 𝑛1 − 𝑛2 = 𝑡𝑎𝑛ℎ [
𝛽

2
{

1

𝑎𝜎2 [(
2𝑅

1+𝑚𝑡−2
− 𝑅) . 𝑥𝑡−1 +

𝑚𝑡−2−1

1+𝑚𝑡−2
. 𝑔. 𝑥𝑡−2] . [

2𝑅

1+𝑚𝑡−2
. 𝑥𝑡−1 + (

𝑚𝑡−2−1

1+𝑚𝑡−2
− 1) . 𝑔. 𝑥𝑡−2] − 𝐶}]   

   (13) 

 

Note that, Eq.12 and Eq.13 represent a nonlinear system dynamic and if the 

states of the mentioned dynamics are being chosen as in Eq.14, the global dynamic 

of the system could be easily analyzed. 

 

𝑋(𝑘) = [𝑋1(𝑘), 𝑋1(𝑘), 𝑋1(𝑘), 𝑋1(𝑘)] = [𝑚𝑡−2,𝑚𝑡−1, 𝑥𝑡−2, 𝑥𝑡−1]  

         (14) 

 

Accordingly, the nonlinear state space equations could be written as 

 

𝑋1(𝑘 + 1) = 𝑋2(𝑘)       (15.a) 

𝑋2(𝑘 + 1) = 𝑡𝑎𝑛ℎ [
𝛽

2
{

1

𝑎𝜎2 [(
2𝑅

1+𝑋1(𝑘)
− 𝑅) . 𝑋4(𝑘) +

𝑋1(𝑘)−1

1+𝑋1(𝑘)
. 𝑔. 𝑋3(𝑘)] . [

2𝑅

1+𝑋1(𝑘)
. 𝑋4(𝑘) + (

𝑋1(𝑘)−1

1+𝑋1(𝑘)
− 1) . 𝑔. 𝑋3(𝑘)] − 𝐶}]  

    (15.b) 

𝑋3(𝑘 + 1) = 𝑋4(𝑘)       (15.c) 

               𝑋4(𝑘 + 1) =
2𝑅

1+𝑋1(𝑘)
. 𝑋4(𝑘) +

𝑋1(𝑘)−1

1+𝑋1(𝑘)
. 𝑔. 𝑋3(𝑘)   

         (15.d) 
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2.1.1 Stability Analysis 
Definition 1: An equilibrium point 𝐸 is evolutionary stable state(𝐸𝑆𝑆) of a system 

if the system in that state cannot be invaded by any new mutant strategies [14].  

Theorem 1: If 𝐸 is an 𝐸𝑆𝑆 then it is strictly stable equilibrium point of the discrete 
dynamical system restricted to k. note that, in a sampled data system, a fixed point is stable 
if all eigenvalues have a negative real part [1].  

Here, if we consider the evolutionary equilibrium as the solution to this dynamic, the 
stability of evolutionary equilibrium should be analyzed. The fixed point of the dynamic is 
the evolutionary equilibrium where it is obtained by solving �̅�(𝑘 + 1) = �̅�(𝑘). 

For evaluating the fixed points of the system, the equality �̅�(𝑘 + 1) = �̅�(𝑘) ought 

to be solved, where, �̅� = [𝑋1; 𝑋2; 𝑋3; 𝑋4]and leads to  

 

�̅�1 = �̅�2        (16.a) 

�̅�2 = 𝑡𝑎𝑛ℎ [
𝛽

2
{

1

𝑎𝜎2 [(
2𝑅

1+�̅�1
− 𝑅) . �̅�4 +

�̅�1−1

1+�̅�1
. 𝑔. �̅�3] . [

2𝑅

1+�̅�1
. �̅�4 + (

�̅�1−1

1+�̅�1
− 1) . 𝑔. �̅�3] −

                𝐶}]          (16.b) 

�̅�3 = �̅�4        (16.c) 

 �̅�4 =
2𝑅

1+�̅�1
. �̅�4 +

�̅�1−1

1+�̅�1
. 𝑔. �̅�3      (16.d) 

 
Now, with consideration of �̅�1 = �̅�2 = �̅�and �̅�3 = �̅�4 = �̅�, we solve Eq.16 

 

�̅�  = 𝑡𝑎𝑛ℎ [
𝛽

2
{

1

𝑎𝜎2 [(
2𝑅

1+�̅�
− 𝑅) . �̅� +

�̅� −1

1+�̅�
. 𝑔. �̅�] . [

2𝑅

1+�̅�
. �̅� + (

�̅� −1

1+�̅�
− 1) . 𝑔. �̅�] − 𝐶}] 

        (17.a) 

�̅� =
2𝑅

1+�̅�
. �̅� +

�̅� −1

1+�̅�
. 𝑔. �̅�     (17.b) 

 

Eq. 17.b leads to�̅� = 0or �̅� = 1 − 2
𝑅−1

𝑔−1
. Now with substituting these solutions in 

Eq. 17.a the equilibrium points will be found. Substituting 𝑥𝑒𝑞 = 0 in Eq.17.a and solving 

the equation with respect to 𝑚, yields into 𝑚𝑒𝑞 = 𝑡𝑎𝑛ℎ(
−𝛽𝐶

2⁄ ), which is one of the 

equilibrium points of the dynamic that is 𝐸1 =

[𝑚𝑒𝑞 , 𝑚𝑒𝑞 , 𝑥𝑒𝑞 , 𝑥𝑒𝑞] =[𝑡𝑎𝑛ℎ(
−𝛽𝐶

2⁄ ) , 𝑡𝑎𝑛ℎ(
−𝛽𝐶

2⁄ ) , 0,0]. Now, with substitution of 

𝑚∗ = 1 − 2
𝑅−1

𝑔−1
 in Eq. 16.a and solving the equation with respect to 𝑥, the answer 𝑥∗,  

would be the solution of the 1 − 2
𝑅−1

𝑔−1
= 𝑡𝑎𝑛ℎ {

𝛽

2
[𝐷(𝑔 − 1)(𝑅 − 1)(𝑥∗)2 − 𝐶]}. 

If 𝑥∗ would be the positive solution of the mentioned equality and based on the fact 
that this equation has two conjugate roots, then there could exist two fixed point of the 
dynamic which are 𝐸2 = [𝑚∗, 𝑚∗, 𝑥∗, 𝑥∗] and 𝐸3 = [𝑚∗, 𝑚∗, −𝑥∗, −𝑥∗]  
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where, 𝑥∗ =
√2𝐶+𝑙𝑛(

𝑔−𝑅

𝑅−1
)

√𝛽𝐷(𝑅−1)(𝑔−1)
 . As considered before, −1 ≤ 𝑚 ≤ 1. According to �̅� = 1 −

2
𝑅−1

𝑔−1
 , 𝑚 > 1 and 𝑚 < −1 lead to 𝑔 < 𝑅 in which Eq.17 doesn’t have any solution which 

means if 𝑔 < 𝑅, 𝐸1 is the unique equilibrium points of the dynamic. For 𝑔 > 2𝑅 − 1 there 
exists three equilibrium points 𝐸1, 𝐸2and 𝐸3. Besides, for 𝑅 < 𝑔 < 2𝑅 − 1 there are two 

possibilities. If (1 − 2
𝑅−1

𝑔−1
) < 𝑡𝑎𝑛ℎ (

−𝛽𝐶
2⁄ ) , 𝐸1 is the unique equilibrium point. Else, 

there exists three equilibrium points 𝐸1, 𝐸2and 𝐸3.  

For the system of the form:  

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘))      (18) 

 
Recall that, if a function 𝜓:ℝ≥0 → ℝ≥0 is continuous, strictly increasing and  

𝜓(0) = 0 then it is a 𝒦 − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. Furthermore, it is a 𝒦∞ − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 if it is a 𝒦 −
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 and also 𝜓(𝑠) → ∞as 𝑠 → ∞. If 𝜓(𝑠) > 0 for all 𝑠 > 0, and 𝜓(0) = 0, it is a 
positive definite function. A function 𝛽:ℝ≥0 × ℝ≥0 → ℝ≥0 is a 𝒦ℒ − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 if for each 
fixed 𝑠 ≥ 0, the function 𝛽(𝑠, . ) is decreasing and 𝛽(𝑠, 𝑡)  → 0 as 𝑡 → ∞, and for each fixed 
𝑡 ≥ 0, the function 𝛽(. , 𝑡) is a 𝒦 − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 

Note that in a stable system, every state trajectory remains bounded; and no matter 
what the initial state is, the state trajectory eventually becomes small.  

Definition 2: A nonlinear dynamic system of Eq.18 is asymptotically stable (𝐴𝑆) if 
there exist a 𝒦ℒ − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝛽:ℝ≥0 × ℝ≥0 → ℝ≥0 such that, for each 𝜉 ∈ ℝ𝑛, it holds  
|𝑥(𝑘, 𝜉)| ≤ 𝛽(|𝜉|, 𝑘) for each 𝑘 ∈ ℤ+. 

Definition 3: A continuous function 𝑉:ℝ𝑛 → ℝ≥0 is called a lyapunov function for 
a nonlinear dynamic system if the following holds: 

There exist 𝒦∞ − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝛼1 and 𝛼2 such that  

 

𝛼1(|𝜉|) ≤ 𝑉(𝜉) ≤ 𝛼2(|𝜉|),    ∀𝜉 ∈ ℝ𝑛    (19) 
 

There exist a a𝒦∞ − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝛼3 such that 

𝑉(𝑓(𝜉)) − 𝑉(𝜉) ≤ 𝛼3(|𝜉|)∀𝜉 ∈ ℝ𝑛    (20) 
 

Theorem 2: The linear discrete-time system is considered as  

𝑥(𝑘 + 1) = A𝑥(𝑘)      (21) 
 

where the eigenvalues of A are located strictly inside the unit disk. For a symmetric and 
positive-definite matrix 𝑄, 𝑃 > 0 is the unique solution to the matrix 𝐴𝑇𝑃𝐴 − 𝐴 = −𝑄. The 
matrix 𝑉(𝑥) = 𝑥𝑇𝑃𝑥 is positive-definite and radially unbounded function which satisfies the 
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condition of Definition 3 with 𝛼1(𝑟) = 𝜆𝑚𝑖𝑛(𝑃)𝑟2, 𝛼2(𝑟) = 𝜆𝑚𝑎𝑥(𝑃)𝑟2 and 𝛼3(𝑟) =
1

2
𝜆𝑚𝑖𝑛(𝑄)𝑟2. Therefore, 𝑉 is a 𝐿𝑦𝑎𝑝𝑢𝑛𝑜𝑣 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 for the system in Eq.21 [15]. 

Corollary: system in Eq.18 is asymptotically stable in fixed point E if the 
eigenvalues of the Jacobian matrix stays inside unit disk. 

It has been proven that, an evolutionary dynamic converges to fundamental 
equilibrium which is why the stability of 𝐸1 will be discussed. The Jacobian matrix of the 
nonlinear dynamic in Eq.15 is formed at the fixed point 𝐸1. 

 

𝐽 =

[
 
 
 
𝜕𝑋1[𝑘+1]

𝜕𝑋1[𝑘]
⋯

𝜕𝑋1[𝑘+1]

𝜕𝑋4[𝑘]

⋮ ⋱ ⋮
𝜕𝑋4[𝑘+1]

𝜕𝑋1[𝑘]
⋯

𝜕𝑋4[𝑘+1]

𝜕𝑋4[𝑘] ]
 
 
 

=

(

 
 

0 1
0 0

0 0
0 0

0 0
0 0

0 1
𝑔(1+𝑡𝑎𝑛ℎ(

𝛽𝐶
2⁄ ))

𝑡𝑎𝑛ℎ(
𝛽𝐶

2⁄ )−1

2𝑅

𝑡𝑎𝑛ℎ(
𝛽𝐶

2⁄ )−1)

 
 

  

         (22) 
 

The eigenvalues of the mentioned matrix are found to be 

 

(

𝜆1

𝜆2

𝜆3

𝜆4

) =

(

 
 
 
 
 0

0

−𝑅+√𝑅2−𝑔+𝑔.𝑡𝑎𝑛ℎ2(
𝐶𝛽
2 )

𝑡𝑎𝑛ℎ(
𝐶𝛽
2 )−1

−𝑅−√𝑅2−𝑔+𝑔.𝑡𝑎𝑛ℎ2(
𝐶𝛽
2 )

𝑡𝑎𝑛ℎ(
𝐶𝛽
2 )−1 )

 
 
 
 
 

      (23) 

 

where, 1 ≤ 𝑅 ≤ 2,𝛽 ≥ 0,  𝐶 ≥ 0 and 0 ≤ [𝐴 = 𝑡𝑎𝑛ℎ (
𝐶𝛽

2
)] ≤ 1. To establish 

stable equilibrium, 𝑔 have to be evaluated in such way that eigenvalues stay inside unit 
circle. As it is shown in Eq.23, the 𝐽 matrix, has four eigenvalues which contains two zero 
eigenvalues that are permanently inside unit disk. The other two should be revisited. 

 

2.2 Evolutionary Model With Partly Rational Agents 

A heterogeneous evolutionary model of pricing including an agent with 

perfect foresight has been investigated earlier. The problem with perfect foresight 

is that many researchers think the perfect forecast assumption is unrealistic. 

Possessing rational forecast under homogeneous expectations would require 

knowledge of the law of motion. But it is even more demanding in the 

heterogeneous world, where one should also know what others expect. In other 

words, a perfect forecaster would has to know the whole dynamic of the system 

and the expectations of other agents about future price to make a precise two step 

ahead (2SA) predict of future price. Besides, a mistaken 2SA predict could affect 

the stability of equilibrium points of the model. Here, it is being assumed that the 
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future price has been estimated with a reliable method and we discuss the 

robustness of the model with respect to estimation error. Suppose two step ahead 

price has been forecasted with error 𝜀 which means Eq.8 changes into Eq.24 

 

𝑓1,𝑡 = 𝑥𝑡+1 + 𝜺𝒕      (24) 

 

This error parameter causes some variations in state space equations as in 

Eq.25 

 

𝑋1[𝑘 + 1] = 𝑋2[𝑘]      (25.a) 

𝑋2[𝑘 + 1] = 𝑡𝑎𝑛ℎ [
𝛽

2
{

1

𝑎𝜎2 [(
2𝑅

1+𝑋1[𝑘]
− 𝑅) . 𝑋4[𝑘] +

𝑋1[𝑘]−1

1+𝑋1[𝑘]
. 𝑔. 𝑋3[𝑘] +

𝜺[𝒌]] . [
2𝑅

1+𝑋1[𝑘]
. 𝑋4[𝑘] + (

𝑋1[𝑘]−1

1+𝑋1[𝑘]
− 1) . 𝑔. 𝑋3[𝑘] + 𝜺[𝒌]] − 𝐶}]   

        (25.b) 

𝑋3[𝑘 + 1] = 𝑋4[𝑘]      (25.c) 

𝑋4[𝑘 + 1] =
2𝑅

1+𝑋1[𝑘]
. 𝑋4[𝑘] +

𝑋1[𝑘]−1

1+𝑋1[𝑘]
. 𝑔. 𝑋3[𝑘] + 𝜺[𝒌]   

        (25.d) 

 

Suppose 𝜺[𝒌] is small enough, such that the fixed points of the system stay 

unchanged. For the discrete time nonlinear system of the form 

 

𝑋[𝑘 + 1] = 𝑓(𝑋[𝑘], 𝑑[𝑘])     (26) 

 

where, 𝑑(𝑘)is the disturbance or time varying parameter.  

Corollary: It is proven that a discrete-time system with disturbances or 

time-varying parameters, taking values in a compact set, is uniformly 

asymptotically stable (UAS) with respect to a closed, not necessarily compact, 

invariant set 𝒜 if and only if there exists a smooth Lyapunov function 𝑉 with 

respect to the set 𝒜 [16]. The system presented in Eq.25 could be presented as a 

form of Eq.26 assuming 𝑑(𝑘) = 𝜺[𝒌]. The mentioned system is stable in fixed 

point E if the eigenvalues of the Jacobian matrix stays inside unit disk based on 

Theorem 2 and the closed and invariant set 𝒜 is the Region of Attraction (ROA) of 

the system. 

Here, we compute the Jacobian matrix of the new dynamic in 𝐸1 and 

calculate the eigenvalues of it. Here, if we try to analyze the stability of the model 

with consideration of 𝜺, eigenvalues of the Jacobian matrix will be found. 
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(

𝜆1

𝜆2

𝜆3

𝜆4

) =

(

 
 
 
 
 
 
 

0
0

𝑅−𝑅.𝑡𝑎𝑛ℎ(
𝐶𝛽

2
)−𝑡𝑎𝑛ℎ(

𝛽(𝐶−𝐷𝜀2)

2
).𝐴+𝐴+𝑅.𝑡𝑎𝑛ℎ(

𝛽𝐷𝜀2

2
)−𝑅.𝑡𝑎𝑛ℎ(

𝛽𝐷𝜀2

2
).𝑡𝑎𝑛ℎ(

𝐶𝛽

2
)

(𝑡𝑎𝑛ℎ(
𝛽𝐷𝜀2

2
)+1).(𝑡𝑎𝑛ℎ(

𝛽(𝐶−𝐷𝜀2)

2
)−1).(𝑡𝑎𝑛ℎ(

𝐶𝛽

2
)−1)

𝑅−𝑅.𝑡𝑎𝑛ℎ(
𝐶𝛽

2
)+𝑡𝑎𝑛ℎ(

𝛽(𝐶−𝐷𝜀2)

2
).𝐴−𝐴+𝑅.𝑡𝑎𝑛ℎ(

𝛽𝐷𝜀2

2
)−𝑅.𝑡𝑎𝑛ℎ(

𝛽𝐷𝜀2

2
).𝑡𝑎𝑛ℎ(

𝐶𝛽

2
)

(𝑡𝑎𝑛ℎ(
𝛽𝐷𝜀2

2
)+1).(𝑡𝑎𝑛ℎ(

𝛽(𝐶−𝐷𝜀2)

2
)−1).(𝑡𝑎𝑛ℎ(

𝐶𝛽

2
)−1) )

 
 
 
 
 
 
 

, 

         (27) 

and , 𝐴 =

√
𝑅2. 𝑡𝑎𝑛ℎ2 (

𝐶𝛽

2
) . 𝑡𝑎𝑛ℎ2 (

𝛽𝐷𝜀2

2
) − 2𝑅2. 𝑡𝑎𝑛ℎ (

𝛽𝐷𝜀2

2
) . 𝑡𝑎𝑛ℎ (

𝐶𝛽

2
) + 𝑅2

−𝑔. 𝑡𝑎𝑛ℎ2 (
𝛽𝐷𝜀2

2
) . 𝑡𝑎𝑛ℎ2 (

𝐶𝛽

2
) + 𝑔. 𝑡𝑎𝑛ℎ2 (

𝛽𝐷𝜀2

2
) + 𝑔. 𝑡𝑎𝑛ℎ2 (

𝐶𝛽

2
) − 𝑔

 

 

As it is shown in Eq.27, the 𝐽 matrix, has four eigenvalues which contains 

two zero eigenvalues that are permanently inside unit disk. The other two should 

be revisited. 

 

 

3. A Novel Method in Two-Step-Ahead Market Forecasting 

In this section, for 2SA predicting of price an Improved Reinforced Real 

Time Recurrent Learning (IR-RTRL) algorithm for Recurrent Neural Networks 

(RNNs) is presented. Reinforced Recurrent Neural Network (R-RNN) as which is 

depicted in figure 1, consists of 2 layers, 𝑀 external inputs and 𝐾 outputs [17]. 
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Input x(t)

1 M

N1

1 N

y(t)

Time 
delay

y(t+1)

Output layer

Processing layer

Input layer    

  

  

z(t+2)

1 K

 

Figure 1. Architecture of 2SA RNN 

 

The network input, as illustrated in Eq.40 is formed of two vectors 𝑥(𝑡)and 

𝑦(𝑡), where 𝑥(𝑡) denotes the 𝑀 × 1 discrete time varying input vector and 𝑦(𝑡 +
1) is the 𝑁 × 1 output of the corresponding processing layer. 

 

𝜇(𝑡) = [ 𝑥(𝑡) ;  𝑦(𝑡)  ]      (28) 

 

 On the other hand, as shown in figure 1, 𝑦(𝑡 + 1) is the input of the second 

layer and 𝑧(𝑡 + 2) denotes the corresponding 𝑘 × 1 output.The output of neuron 𝑗 
in the processing layer and the net output of neuron k in the output layer at time 

𝑡 + 2are given by Eq.29.a and Eq.29.b respectively. 

 

𝑦𝑗(𝑡 + 1) = 𝑓(∑ 𝑤1𝑗𝑖(𝑡)𝜇𝑖(𝑡)𝑖∈𝐴∪𝐵 )     (29.a) 

𝑧𝑘(𝑡 + 2) = 𝑓(∑ 𝑤2𝑘𝑗(𝑡 + 1)𝑦𝑗(𝑡 + 1)𝑗 )    (29.a) 
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where, 𝑤𝑙𝑗𝑖(𝑡) is network weight and 𝑓(. ) is a nonlinear function. In output 

layer, the instantaneousoverall network error is defined in Eq.30, where 𝑒𝑘(𝑡 + 2) 

is the 𝑘th element of time-varying 𝐾 × 1 error vector and 𝑑𝑘(𝑡 + 2) denotes the 

target value of neuron 𝑘 at time 𝑡 + 2. 

𝐸(𝑡 + 2) =  
1

2
∑ 𝑒𝑘

2(𝑡 + 2)𝐾
𝑘=1 =

1

2
∑ (𝑑𝑘(𝑡 + 2) − 𝑧𝑘(𝑡 + 2))2𝐾

𝑘=1   

        (30) 

The weight change for any particular weight wlmn update rule, yields based 

on gradient descent back propagation method, can be written as Eq.31. 

 

∆𝑤𝑙𝑚𝑛(𝑡) = −𝜂𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒
𝜕(𝛼+𝛽.𝐷𝑆)(𝐸(𝑡+2))

𝜕𝑤𝑙𝑚𝑛(𝑡)
    (31) 

 

where𝛼 and 𝛽 are constant coefficient and 𝐷𝑆 is directional parameter. 

Even though minimizing the prediction error and making an accurate forecast is 

very important, predicting the direction of movement of financial time series has 

higher importance. Moreover, as discussed before, customers have to arrange their 

decision of trading which affect their benefits and total wealth. Furthermore, 

correct forecasting directions or turning points between the actual and predicted 

values could lead them toward improved decisions of trading.  Thus, based on the 

fact that direction prediction plays an essential role in efficiency of market 

forecasting methods, an improved method of learning is presented, in which, an 

improved punishment function is proposed which include a linear coefficient 

depending on the DS which is tend to be used as an evaluation criterion of 

direction prediction thus far [18],[19]. 𝐷𝑆is a statistical measure of a model's 

performance in predicting the direction of change, positive or negative, of a time 

seriesfrom one time period to the next.  

 

𝐷𝑆 =
1

𝑀
∑ 𝑎(𝑡) × 100%𝑁

𝑡=1      (32) 

 

where, 𝑀 is the length of input signal and parameter 𝑎(𝑡) is defined 

through Eq.33 

 

𝑎(𝑡) = {
1   𝑖𝑓 (𝑑(𝑡 + 3) − 𝑑(𝑡 + 2))(𝑧(𝑡 + 3) − 𝑧(𝑡 + 2)) > 0

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                               
  

        (33) 

 

Improved reinforced 2SA weight adjustment procedure for RNN is 

represented completely in figure 2.   
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tempRNN

DS EO

REO

d(t+2)

z(t+2)

x(t+1)

x(t) x(t+1)

ˆ( 3)z t 

Ŵ

W

EO

REO

:Error operator

:Reinforced error operator

:Directional symmetry operator

:Input of time t

:Target value of time t

:Predicted value of time t

:Repredicted value of time t

x(t)

d(t)

Z(t)
DS

RNN

Z(t)

ˆ( 3)z t

 
 

Figure 2.  Improved reinforced 2SA weight adjustment procedure for 

RNN 
 

Following that, for the reinforcement learning stage we have the set of 

Eq.34 

�̂�𝑗(𝑡 + 2) = 𝑓 ( ∑ (𝑤1𝑗𝑖(𝑡) + ∆𝑤1𝑗𝑖(𝑡)) 𝜇𝑖(𝑡 + 1)

𝑖∈𝐴∪𝐵

) 

�̂�𝑘(𝑡 + 3) =  𝑓 (∑(𝑤2𝑗𝑖(𝑡 + 1) + ∆𝑤2𝑗𝑖(𝑡 + 1)) �̂�𝑗(𝑡 + 2)

𝑗

) 

�̂�𝑘(𝑡 + 3) = �̂�𝑘(𝑡 + 3) − 𝑧𝑘(𝑡 + 3) 
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�̂�(𝑡 + 3) =
1

2
∑ �̂�𝑘

2(𝑡 + 3)

𝐾

𝑘=1

 

∆�̂�𝑙𝑚𝑛 = −𝜂𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒
𝜕(𝛼+𝛽.𝑑𝑠𝑓)(�̂�(𝑡+2))

𝜕𝑤𝑙𝑚𝑛
    (34) 

 

 And finally, the updating process is given by Eq.35 

 

𝑤𝑙𝑚𝑛
𝑛𝑒𝑤 = 𝑤𝑙𝑚𝑛 + Δ𝑤𝑙𝑚𝑛 + Δ�̂�𝑙𝑚𝑛    (35) 

 

The training phase algorithm for the ImprovedR-RTRL (IR-RTRL) could be 

wrapped up as below: 

 

i. Initialize the network(RNN) 

ii. Apply input  x( t) to the RNN and get corresponding output z(t +
2) 

iii. Compare z(t + 2) with desired output d(t + 2) and get E(t + 2) 

iv. Calculate DS 

v. Update weights based on gradient method over punishment 

function (α + β. DS)(E(t + 2)) with the adaptive learning rate and 

get the temporal neural network, RNNtemp 

vi. Apply input x(t + 1) to RNNtemp and get corresponding output 

ẑ(t + 3) 

vii. Compare ẑ(t + 3) with desired   output d(t + 3) and get Ê(t + 3) 

viii. Update weights based on gradient method over punishment 

function (α + β. dsf) (Ê(t + 2)) with the adaptive learning rate and 

get RNN for next iteration 

ix. Go to step 2 
 

Figure 3 depicts flow chart of the online learning scheme for the IR-RTRL. 

As shown in the figure, after initializing network and parameters, a specified 

number of past data forms a time window of data which is used as network input. 

After training network for a specified input, to modify the structure of the training 

algorithm, the correctness of direction is being checked and in case of wrong 

detection, the training stage reiterates. And the algorithm continues with the input 

data of next iteration. 
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Figure 3. Flow chart of the online learning algorithm for I-RRNN 

 

4. Application 

We apply the proposed model to daily gold price data from the database of 

Bloomberg, which is the open access database including historical data of gold 

market is used to perform simulations. In this work, spanning data from 21 

December 2012 to 15 August 2014, a total of 1131 observations are used in genetic 

algorithm method to find the unknown parameters of model and spanning data 

from 16 August 2014 to 15 January 2016, a total of 427 observations are used for 

testing the model. Besides, spanning data from 21 December 2012 to 15 January 
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2016, a total of 1558 observations are used in online training of the neural network. 

In learning stage of RNN, more importance is given to the new data by weakening 

the influence of older data points. In each level of online learning, the modification 

of weights is performed on a time window which contains the specified number of 

data till considered point. The process in Eq.36 helps us to normalize the data 

series. 

 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 0.1 𝑙𝑜𝑔(𝑋(𝑡))    (36) 

 

We depict the predominance of the proposed neural network by comparing 

the performance of it with R-RTRL network and BPNN. The forecast ability of the 

model is become manifest by studying the Mean Square Error (MSE) and the 

Normalized Mean Square Error (NMSE) criterions given by Eq.37 and Eq.38.  

 

𝑀𝑆𝐸 =
1

𝑀
(𝑑(𝑡) − 𝑜(𝑡))2     (37) 

𝑁𝑀𝑆𝐸 =
(𝑑(𝑡)−𝑜(𝑡))2

(𝑜(𝑡)−�̅�(𝑡))2
      (38) 

 

where, 𝑀 is the length of input signal and �̅� is the average of the observed values 

and 𝑑(𝑡) and 𝑜(𝑡) denote the predicted and observed value of price at time 𝑡 

respectively.  

To model behavior of an economical system based on its time series data 

set, the set of unknown parameters 𝛽, 𝑅 , 𝑔 , 𝐷 , 𝐶 and 𝑝∗ should be evaluated. For a 

sample system like gold price, considering Eq.23, the condition in Eq.39 should be 

satisfied. 

 

𝑀𝑖𝑛𝑃𝑇 =
1

2
∑ (𝑑(𝑡) − 𝑜(𝑡))2𝑇

𝑡=1  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜 ∶  |𝜆3| < 1&|𝜆4| < 1    (39) 

 

where, 𝑑(𝑡)  and 𝑜(𝑡)denote the predicted and observed value of price at time 𝑡 

respectively and 𝑃𝑇 is the estimation error over time. The parameters 𝛽,𝑅 ,𝑔 ,𝐷 ,𝐶 

and𝑝∗ are calculated using the standard genetic algorithm applied over time series 

of gold market so that the condition in Eq.39 would be satisfied. The parameters 

will be found as 𝛽 = 0.27, 𝑅 = 1.02, 𝑔 = 1.047, 𝐷 = 1717.8, 𝐶 = −0.18 and 

𝑝∗ = −0.73. Assuming proposed parameters, the stability condition of three fixed 

points of the dynamic has been studied. For 𝐸1, the characteristic polynomial of the 

Jacobian matrix would be 𝑑(𝜆) = 𝜆4 − 1.9938𝜆3 + 0.9972𝜆2 which means the 

eigenvalues of the matrix are 𝜆1 = 0, 𝜆2 = 0, 𝜆3 = 0.9969 −  0.0581𝑖 and  𝜆4 =
0.9969 +  0.0581𝑖. It is clear that all eigenvalues stay inside unit circle that proves 

the stability of the system in 𝐸1. For 𝐸2and 𝐸3, the solutions of the characteristic 

polynomial would be 𝜆1 = 1.067 + 𝑖0.027, 𝜆2 = 1.067 − 𝑖0.027, 𝜆3 = 0.14 +
𝑖 0.22 and  𝜆4 = 0.14 − 𝑖 0.22, which means two of four eigenvalues of the matrix 
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are not inside unit circle that proves the instability of the system in 𝐸2 and 𝐸3. 

Thus, 𝐸1is the only stable equilibrium and a regular 𝐸𝑆𝑆 of the system.  

4.1Evolutionary equilibrium with respect to varying parameters 

In this section, the stability of 𝐸1 will be discussed according to varying 

parameters. As discussed in previous section, two of eigenvalues are always 

constant and equal to zero. That is why considering the other two eigenvalues is 

adequate. As a first step, parameter 𝛽 changes considering 𝑔, 𝐷, 𝐶 and𝑝∗ constant. 

 

 
(4.a) 

 
(4.b) 

 
(4.c) 
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Figure 4: Magnitude of eigenvalues with respect to varying parameters. 

Numerical analysis: Case 𝛃 = 𝟎. 𝟐𝟕, 𝐑 = 𝟏. 𝟎𝟐, 𝐠 = 𝟏. 𝟎𝟒𝟕, 𝐃 = 𝟏𝟕𝟏𝟕. 𝟖, 𝐂 =
−𝟎.𝟏𝟖 and 𝐩∗ = −𝟎. 𝟕𝟑 

 

As depicted in figure (4.a), if 𝛽 remains in [0.26 1.94] area, system remains 

stable. It means for large values of 𝛽, i.e. high intensity of choice, system gets 

unstable. Figure (4.b) shows that for small amounts of risk free return, 1 ≤ 𝑅 ≤
1.02 the system stays stable. But as the amounts of risk free return grows, investors 

would rather to invest on risk free asset which makes this system unstable. Figure 
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(4.c) demonstrates the variation of eigenvalues with respect to varying 𝐶. This 

parameter shows the benefit that rational agent gets. It is clear that rational agent 

should spend profit to get information for being rational. The stable area for 

parameter 𝐶is −0.71 ≤ 𝐶 ≤ −0.17. According to figure (4.d), if the belief of the 

technical traders stays which affects parameter 𝑔 stays in the range [1.04 1.05], 
system remains stable. 

According to Eq.27, it is quite clear that the Jacobian matrix of an 

evolutionary model with partly rational agents has only two nonzero eigenvalues 

which are continuous with respect to term 𝜀. Analyzing the eigenvalues with 

respect to varying parameter 𝜀, one could conclude that these two eigenvalues will 

stay inside unit circle for small 𝜀. That means one could claim that if any agent’s 

belief of future price has prediction error less than 𝜀0 the equilibrium remains 

stable; which is depicted in figure 5 to be |𝜀0| = 0.02. 

 

 
Figure 5. Magnitude of the eigenvalues of system with partially rational 

agent 
 

Results demonstrated in table 1, depicts that the proposedIR-RTRL 

algorithm has smaller NMSE and MSEin 2SA forecast. According to the table 1, 

MSE of online R-RTRL learning is larger than twice the MSE of proposed online 

IR-RTRL learning method.  

Figure 6 depicts the gold market price and online 2SAnormalized forecast 

error of it based on proposed IR-RTRL. As clarified in figure 6, absolute value of 

the forecasting error of the proposed method does not exceed the stability margin 

𝜺𝟎,of the model and one could draw the conclusion that in case of applying it as 

2SA forecasting method, the equilibrium remains stable and this prediction could 

be used as an estimation of 2SA price expectation in heterogeneous agent models 

for gold market modeling. 
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(a) 

 

(b) 

Figure 6. (a) Gold market normalized daily price and (b) online 2SA 

normalized forecast error of it based on Proposed IR-RTRL 

 

Table 1 Model performance of 1SA and 2SA forecast of gold market price 
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MSE NMSE MSE NMSE 
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EGT 1.84E+02 3.82E-03 --- --- 

IR-RTRL 2.12E+02 4.39E-03 2.17E+02 4.50E-03 

R-RTRL 3.57E+02 7.43E-03 3.64E+02 7.56E-03 

BPNN 6.73E+02 1.42E-02 6.80E+02 1.43E-02 

 

Figure 7 depicts the online forecast of Gold marketbased on the proposed 

evolutionary model along with Gold market daily price. Clearly, the forecast error 

of the evolutionary model is significantly small. Moreover, studying the results 

displayed in table 1 shows that 1SA forecast based on the evolutionary model has 

lower mean square error and normalized mean square error comparing to other 

methods and in conclusion, the proposed model is efficient. As a conclusion, the 

evolutionary model performs an efficient and precise prediction of future gold 

price forecasting issue. 

 

 

 

Figure 7. Gold market daily price along with EGT 2SA 

 

 

5. Conclusion 

In this paper, a novel method of modeling an evolutionary dynamic 

consisting of rational agent has been proposed and approved stable. This novel 

approach has been proposed to solve the problem with modeling future 

dependency of rational agent consistent dynamics. Furthermore, the stability of the 

dynamic with partly rational agent which has imprecise prediction has been 

analyzed and the precise analysis of stability of the equilibrium lead into finding 
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the maximum value for prediction error that does not affect the stability has been 

evaluated. Furthermore, proposed approach could be used when an agent has a 

complicated belief that may cause complexity in dynamic and stability analyze of 

the model. 
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